A History of Manifolds and Fibre Spaces1: Tortoises and Hares
نویسندگان
چکیده
During the early 1930’s topology developed some of its most important notions. The first international conference on the young subject took place in Moscow 1935. Fibre spaces were introduced by H. Seifert (1907–1996). By 1950 the notions of fibre space and fibre bundle had become central in the study of algebraic topology. In that year in Bruxelles, and in 1953 at Cornell University, international conferences on topology focused on the study of these spaces. The 1949/50 Séminaire of H. Cartan (1904– ) in Paris, an influential seminar in the spread of new ideas in topology, was dedicated to fibre spaces. In 1951, N.E. Steenrod (1910–1971) published the first textbook on the subject—this was also the first textbook in algebraic topology to give complete accounts of homotopy groups and cohomology groups. In this paper we will discuss how fibre spaces came to become basic objects in algebraic topology. In his report and problem set from the Cornell University conference, W. S. Massey (1920– ) listed five definitions of fibre space [30]: (a) fibre bundles in the American sense; (b) fibre spaces in the sense of Ehresmann and Feldbau; (c) fibre spaces as defined by the French school; (d) fibre spaces in the sense of Hurewicz and Steenrod, and (e) fibre spaces in the sense of Serre. Each of these competing definitions developed out of a mix of examples and problems of interest to the research community in topology, often marked by a national character. We will consider the origins of each of these strands and the relations among them (see also [68]). This paper is about definitions, and about ordinary developments in twentieth century mathematics. The principal hare in the development of fibre spaces is H. Whitney
منابع مشابه
A History of Manifolds and Fibre Spaces: Tortoises and Hares
During the early 1930’s topology developed some of its most important notions. The first international conference on the young subject took place in Moscow 1935. Fibre spaces were introduced by H. Seifert (1907–1996). By 1950 the notions of fibre space and fibre bundle had become central in the study of algebraic topology. In that year in Bruxelles, and in 1953 at Cornell University, internatio...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملThe political economy of change after communism
I survey the first twenty-five years of economic change in the former communist countries after the fall of the Berlin Wall. While diverging sharply from one another, these countries have converged economically and politically towards their nearest neighbors outside the Soviet bloc. The typical country experienced a spurt of economic reform in the early 1990s, slowing dramatically from around 1...
متن کاملConformal mappings preserving the Einstein tensor of Weyl manifolds
In this paper, we obtain a necessary and sufficient condition for a conformal mapping between two Weyl manifolds to preserve Einstein tensor. Then we prove that some basic curvature tensors of $W_n$ are preserved by such a conformal mapping if and only if the covector field of the mapping is locally a gradient. Also, we obtained the relation between the scalar curvatures of the Weyl manifolds r...
متن کاملLow dimensional flat manifolds with some classes of Finsler metric
Flat Riemannian manifolds are (up to isometry) quotient spaces of the Euclidean space R^n over a Bieberbach group and there are an exact classification of of them in 2 and 3 dimensions. In this paper, two classes of flat Finslerian manifolds are stuided and classified in dimensions 2 and 3.
متن کامل